Sheaf Neural Networks

Paul Jason Mello
Department of Computer Science and Engineering
University of Nevada, Reno
pmello@unr.edu

Abstract

A sheaf ties vector spaces together in a topological space with restriction maps
that encode how information transforms and stays consistent across varying gran-
ularities of regions. More concretely, cellular sheaves extend Graph Neural
Networks (GNNs) through generalization of the underlying mathematics. For-
mally, sheaves can be thought of as attaching local vector spaces to a graph’s
elements, with projections between these spaces that preserve the structural re-
lationships of the data while maintaining the local independence of the sheaf.
More eloquently, information flows across cellular sheaves like wind flowing
over a field, which models the data manifolds through sheaf structures with
independent vector spaces as stalks. Sheaf Neural Networks (SNNs) extend
GNNss by restructuring the relationship between each node to handle dissimilar-
ity and independence. My code for training multi-layer SNNs can be found at
https://github.com/paul jmello/SheafNN.

”Nature uses only the longest threads to weave her patterns, so each small piece
of her fabric reveals the organization of the entire tapestry.”

- Richard Feynman [2]]

1 Summary

In this work, we will cover significant ground as we endeavour to illuminate the mechanisms which
guide SNNs which were initial developed by Hansen and Gebhart in ”Sheaf Neural Networks”
[4]. Sheaves have many fundamental properties which make them attractive extensions to graph
networks, notably their convolutional operations and particularly their ability to express complex
data manifolds through the stalk dimensionality which learns independently of the other sheaves in
the cellular sheaf structure.

2 Introduction

GNN:g, first introduced in 2005 by Gori et al. [3]], have been a core training paradigm in artificial
intelligence for the past two decades. Recently, they have started gaining significant attention for
their generality and capabilities especially in graph data structures. Despite this, they suffer from
two key problems, oversmoothing and the heterophily problem. Oversmoothing defines instances
where stacking layers in graph based networks leads to node representations becoming very similar.
The heterophily problem in GNNSs isn’t really a problem since GNNs have an homophily inductive
bias, meaning it is more of a tradeoff of the architecture. GNNs have an inductive bias of homophily
baked in where similar nodes will connect with other similar nodes. Heterophily defines the opposite
tendency where dissimilar nodes tend to connect. In complex data environments, these heterophilic
principles can prove critical for a model to learn.

SNNs, a concept from algebraic topology, offer solutions to these tradeoffs by extending GNN
architectures with convolutional operations, information flow constraints, and independent local


https://github.com/pauljmello/SheafNN

vector spaces for representation. To make this system work effectively, SNNs replace the core graph
Laplacian with a sheaf Laplacian.

Like a field of sheaves, we will grow our understanding through the information we cover in this
work spanning the sheaf data manifold. After patiently nurturing these grains, we will then be able
to harvest our full understanding of SNNs.

3 Background and Motivation

As with most machine learning, SNNs were developed to turn cutting edge theories in physics and
mathematics into a learnable kernel. However, they serve a broader purpose in improving graph
architectures by solving oversmoothing and the heterophily problem. SNNs overcome these chal-
lenges by introducing local independence through their stalks and restriction maps, creating vector
spaces that maintain feature distinctiveness while enabling complex directional relationships. This
makes them particularly valuable for fields like drug discovery and materials science, where con-
ventional graph networks often fail to capture the nuanced, multidimensional relationships between
data points. This is a particularly vital difference between these architectures in that graph neural
networks pass messages to similar nodes, while the SNN structure handles heterophilic settings bet-
ter, leading to increased learned expressivity. SNNs offer a first principles approach to preserving
both local structure and global patterns in the data.

4 Sheaf Neural Networks

SNNs improve on GNNs by introducing the cellular sheaves structure. This provides a highly ex-
pressive representation space for complex relational data. SNNs attach vector spaces or “stalks”
F, € R?toeachnode v € V and F. € RY to each edge e € E. This geometric representation
allows SNNs to model challenging datasets and solving the lack of heterophily in GNNs.

SNNs are built on the algebraic concept of sheaves with stalks being an essential component. This
stalks are essentially localized representation spaces for each node and edge which encourages each
stalk to learn diverse features. In a way, each stalk is simply a decoupled linear layer, and the SNN
structure implements the inductive bias of heterophily. As we increase the dimensions of the stalks,
we increase the feature manifold dimensions of that layer. From this perspective it is important to
highlight that in standard feed forward MLPs information propagates globally all the time for each
layer to learn together; However in SNNs, each sheaf only propagates its local information to its
local neighbors based on the flow of data.

Then how does it pass its local information to its neighbors if each stalk is independent? Restriction
maps offer a direction solution by utilizing linear transformations to map data from node stalks
to edge stalks. Here we can imagine restriction maps as the bending of the stalk as information
flows over it, almost like an activation function. These maps can be diagonal simple, orthogonal
performant, or general flexible matrices.

The Sheaf Laplacian is the core component which defines how SNNs operate. They generalize
the graph Laplacian of GNNs to the complex geometry encoded in the sheaf. We define this as
Lr =676, where §: C°(G, F) — C1(G, F) is the coboundary operator mapping from 0-cochains
nodes to 1-cochains edges. For a given node v and edge e, we use the notation v < e to denote that
node v is incident to edge e. Here, the Laplacian sums the differences in the representations between
the connected nodes as:

LF(x)v = Z Fq};e(quemv - Fu<lexu) (l)
e=(v,u)€E

While the SNN structure is incredibly brilliant with many potential applications, Sheaf Diffusion
[1]] provides the mechanism for effective information propagation on the network through the Sheaf
Laplacian. Utilizing differential equations, a);t(t) = —ApX(t), where A is the normalized Sheaf
Laplacian, Sheaf Diffusion determines how node features evolve over time. In a follow up paper
titled Neural Sheaf Diffusion [1], the researchers identify Sheaf Diffusion to be particularly resistant

to oversmoothing, as the harmonic space maintains dimensionality even at infinite depth. As this




process evolves, the ”wind patterns” (information propagation) eventually converge to the harmonic
space of the Laplacian - a state of perfect agreement with the structure of the sheaf. Additionally,
they find that when the dimensions of the stalks are set to one, d = 1, we recover exactly the standard
graph Laplacian: Ap|4—1 = Ag.

Overall, SNNSs represent a significant step forward in graph modeling by abstracting graphs to cel-
lular sheaves. Its complexity is grounded in elegant mathematics and the poetic structure of rolling
waves of amber grain.

S Methodology

After developing a brief theory around cellular sheaf theory, we can now define SNNs algorithmi-
cally as a sum of those components.

Algorithm 1 Sheaf Neural Networks

Require: Graph G = (V, E), node features X € R™*f stalk dimension d
Ensure: Node embeddings Z
I: H«+ ¢(X) > Project to d-dimensional stalk space
for each edge e = (u,v) € E do
Compute Fyqe, Fryqe € O(d) > Orthogonal restriction maps
end for
Construct sheaf Laplacian Lp where:
Lp [’U,’U] = ZeGEmee Fg;eque
Lrv,u] + —FL_F, foredge e connecting v and u
D < block diagonal of L
Ap + D Y2LpD1/2 > Normalized Sheaf Laplacian
7+ o((I = Ap)(I, ® Wy)HW>) > Sheaf Diffusion
return Z

TReY XN DN

—_ =

The SNN model employs several key components: ¢(X) is an MLP that projects the original f-
dimensional node features into a d-dimensional stalk space. ¢ is a non-linear activation function,
while n is the number of nodes in the graph, I,, is the identity matrix used in the Kronecker product
(I, ® Wy) to ensure node-independent feature transformations.

Our particular SNN uses orthogonal restriction maps F,e, Fiqe € O(d) that transport node features
between stalks while preserving their geometric structure. These mappings comprise the Sheaf
Laplacian L which is defined by the blocks for nodes connected by an edge e:

v<de

Lp[v,v] = Z FL Fyee and Lplv,u] = —FL Fu fore=(v,u)e E (2
ecE:weEe

The normalized Sheaf Laplacian A € R™?*"? bounds our mdoel for stability during propagation.

The Sheaf Diffusion operator (I — A ) represents a discretized time step of the continuous diffu-
sion equation d)gt(t) = —ApX(t) which uses the implicit Euler method with an « step size, which
propagates signals according to the topological structure encoded by the restriction maps. This op-
erator is combined with learnable weight transformations (I,, ® W;) € R"¥*"? and W, € R?*? in

the stalks and across each feature channel respectively. This yields the following propagation rule:

Z =0 ((I—alp)(I, ® W) HW,) 3)

This formulation generalizes conventional GNNs by replacing scalar edge weights with matrix-
valued restriction maps that enable directional signal propagation and complex feature representa-
tions.



6 Experiments and Results

To test the effectiveness of SNNs, a synthetic network dataset was constructed consisting of 160
training nodes and 40 test nodes, with each node being randomly assigned to one of five class labels.
These class labels are injected into a data sample that was sampled from a normal distribution. Each
node is then randomly assigned to 2-3 other nodes in the network utilizing bidirectional edges. This
dataset configuration creates a mixed homophily pattern containing roughly 500 edges.

The experiments hyperparameters were chosen from intuitions built over time. The SNN stalk di-
mensions are set to d = 3, and the input features dimensions are set to 4. The architecture utilizes
a 2 layer deep SNN with ReLU activation functions for tried and true nonlinearity. Training for
250 epochs using AdamW optimization with learning rate = 0.01 and weight decay coefficient
A = 0.01, provided strong results. For computational efficiency, the implementation employed batch
processing with sizes of 64 for degree matrix computation and 256 for Sheaf Diffusion operations.

Evaluation of the SNN is done against a comparable Graph Convolutional Network (GCN) that
performs neighborhood aggregation to match similar nodes based on feature information and edge-
wise message passing. These additions to the GCN architecture are provided to give a better chance
to GCNs on the homophily dataset.

Model Accuracy Training Loss

. Train —— SheafNN
Test a5 GraphCN

0.8 4

0.6 4

Accuracy
Loss.

0.4+

02 1.5 h
1.0

0.0 -

T T T T T T
SheafNN GraphCN 0 50 100 150 200 250
Epoch

Figure 1: Performance comparison between SNNs and GCNs on a synthetic dataset with varying
homophily levels. While the SNN is more computationally intensive to train, it outperforms GCN
on training, test, and loss performance. Note, the GCN was augmented with improved functionality
for the synthetic heterophilic dataset to give a comparable evaluation.

The results demonstrate that SNN outperform GCNSs in our environment and demonstrate that SNNs
can be an effective technique to model complex data.

7 Discussion

The beauty of SNNs lie in its generalization of the diffusion operation done in the graph convolutions
networks. While GNNs operate with fixed sheaves consisting of identity restriction maps, SNNs,
extend this to an n-dimensional vector space with non-linear mappings. This fundamental feature
enables the SNN to function while handling complex data patterns. Specifically, the sheaves natural
structure directly influence the networks ability to separate the nodes by class effectively.

By handling these cellular sheaf bundles through structured decision maps, SNN’s enable a form of
multi-channel transport along the graph. This fundamental change over GNNs extend the underlying
framework to enhance the relationships and representations between nodes in the graph.

8 Conclusion

In this work, SNNs were expanded to the multi-layer setting with the applied Sheaf Diffusion strat-
egy across the cellular sheaves and demonstrated that SNNs outperform GCN in a variety of ways.



These strategies were utilized, but were developed in prior works. These prior works include the
Sheaf Laplacian, which generalizes the graph Laplacian through restriction mappings, and the Sheaf
Diffusion, which guides information flow through the Sheaf Laplacian. These methods help to sig-
nificantly boost the generalization capabilities through abstractions.

SNNs provide a very unique approach to modeling complex data. By extending and improving
these approaches SNNs will excel in complex domains like drug discovery, materials science, social
network analysis, financial systems, and knowledge graphs where heterophily and expressivity are
key.

References

[1] Cristian Bodnar, Francesco Di Giovanni, Benjamin Paul Chamberlain, Pietro Lid, and Michael M. Bron-
stein. Neural sheaf diffusion: A topological perspective on heterophily and oversmoothing in gnns, 2023.

[2] Richard P. Feynman. The Character of Physical Law. MIT Press, Cambridge, MA, 1965.

[3] M. Gori, G. Monfardini, and F. Scarselli. A new model for learning in graph domains. In Proceedings.
2005 IEEE International Joint Conference on Neural Networks, 2005., volume 2, pages 729734 vol. 2,
2005.

[4] Jakob Hansen and Thomas Gebhart. Sheaf neural networks, 2020.



	Summary
	Introduction
	Background and Motivation
	Sheaf Neural Networks
	Methodology
	Experiments and Results
	Discussion
	Conclusion

